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1. INTRODUCTION

For 1 <p<oac, let L, denote the Banach space of pth power Lebesgue
integrable functions on [0, 17 with | /]|, = (4] £7)'”. Let M, denote the
set of nondecreasing functions in L,. For 1 <p<occ, each felL, has a
unique best approximation from AM,, while, for p=1, existence of a best
approximation from M, follows from Proposition 4 of [6].

Recently, there has been interest in characterizing best L, approxima-
tions from M, [1-4,8]. The approach, in most instances, was measure
theoretic. In [8], a duality approach was used to extend the results to all
L,,1<p<on.

In a recent paper [4] an explicit construction was given for a best L,
approximation to f from M. The purpose of this paper is to show that this
construction extends to all the L, -spaces, 1 <p<oc. The L, case was
investigated by Ubhaya [9, 10].

2. BEST MONOTONE APPROXIMATION IN L,[0, 1] FOR 1 <p < o

Let feL,[0,1] for 1 <p < oo. We wish to find g* nondecreasing and in
L,[0,1] such that

1 1
j lf*g*l”SJ | f~g|?  forall suchg.
0 1]

From duality [57], g* best approximates f in the above sense if and only
if
1
|, (e*=o)r—gn1r=g*ir220

for all nondecreasing g in L,[0, 1].
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We now establish a constructive solution to this problem.

DerrrrioN 1. For fe L,[0,1], 1 <p< 0, and any real ¢ let

bo=(f— O el 1)
k)= ¢. O<x<L (2)
=0
m,=min{k (x)0<x<1}, 3)
and
x(c)y=max{x: k(x})=m_]. {4

Lemma 1. x(c) is nondecreasing in c.

Proof. First we establish that ¢.(x)> ¢, (x) for c<d Let e.=f—c.
Then e {x)>e,(x)} for c<d
If e.(x)>e,(x)=0, then
() =ef " (x)>eh " x) = gulx).
Ife (x)=0>e,(x), then ¢ (x)=0>¢,(x).
If 0>e(x)>e,(x), then |e (x)| <|e,(x}| and
—@.(x)=—e(x)e.lx)]” ?
=le(x)|"~!
<ley x)[*!

= —ey(x)le (x)" 7"

= —dalx)
Next assume to the contrary that x{c)> x{d) for some ¢ < d. Then,

x(c)

kaxen=[" ¢,

0

x(d) x(e) )
=[] 4
0 x(d)

~x(c)
—kdx(@)+] 4.

xid})

xic)

>k (x(d)) + .

xidy
=k (x(d)) + ka(x(c)) — ky(x{d))
>k (x(d)),

by the definition of m,=k (x(d)). This contradicts the definition of x{c).

64061 t-y



120 SWETITS AND WEINSTEIN

In the following lemma, as usual x(—coo) and x(+o0) denote respec-
tively lim, _, _ . x(¢) and lim,_, __ . x(?).

LEMMA 2. (a) x{(—a0)=0, (b) x(+w)=1.

Proof.  The proofs of (a) and (b) are similar. Thus we present only
part (a).

Since k.(0)=0, it suffices to show that for any x satisfying 0 <x <1,
liminf. . __ k.(x)>0.

For any ¢ <0 define the set E,={xe [0, 1]:f(x)<c},

and let E¢ denote the complement of E, in [0, 1]. Then,

el w{ES<] (~fr<IfIZ

where u denotes Lebesgue measure. Thus,
p{E I N5/ 1el”.
Next consider E (x)=E_n [0, x]:
| f=cl? 7 <y AL 1I7  feP 7,
where
7, =max {1, 27721

Therefore,

[ =arf—err2<[  if=e
E (x) Edx)

<i [ 11T e B
Ex)

1
<=1, 4  1fIr el wiED
i Ei(x)

el

AT
c

Thus,

lim (f—c)l f—cl?P~2=0.

c— —xX YE(x)



MONOTONE APPROXIMATION ON L ,[0, 1] 121

Finally, consider E°(x)=E<n [0, x]. Since lim._ ., p{Ed(x)}=1x, we
can choose ¢ so that ‘u{Eg(x’)} > x/2. Then, for c<¢

(f=ell f—el? P =((f=)+ c—Nf—c)+ (=l 3
>(f—c)l f—¢l?”*  on EL

Also, E < EY for c <, and therefore since ,u{E:i(x)} >x/2>0
U=l | ol S

Y ESix) E{(x)

~ °
- JE;(.‘ci

f=alf-ci"7?>0.

Therefore, for any x satisfying 0 < x <1,

~

limian (f—c)l f—ei? 2>0,

¢~ —x YEx)

and thus since

~xX

. (f“c‘)|f—C|”’2=f . (f—c) f—ciP™?

E (x)

+ |

“E(x

;(,;'”—-f)lf“Cl'"’2

we can conclude that

~x

limian (f—c)| f—cl?7>>0.

¢c— —x vy

The following lemma shows that x(c} is continuous from the right. As
usual x{c+) denotes lim, _, ., x(r).

Lemma 3. x(c+)=x(c).
Proof. For 6>0

kevslx(c+0)) Sk 5x(c))

x{¢)

=J ¢(+5
0
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Letting 6 - 0+ we obtain

x(c+)
k(xle+) =] go<m,.
0
By the definition of m,, k{x{c+))=m, Thus kfx{c+))=m,, and,
therefore, x(c+)<x(c). Since x(c) is nondecreasing, it follows that
x(c+)=x(c).
In general, x(c) may be discontinuous. If

x(c—)<x(c+)=x(c),

where x(¢—) denotes lim,_, ._ x(¢), then we say c is a jump for x(-).

Locating the jumps for x(.) will enable us to define the following
approximation g* which we shall prove to be the best nondecreasing L,
approximation to fe L,[0, 1].

DeriNITION 2. Since x(-) is nondecresing and right continuous, by
Lemma 2 each re (0, 1) is in some interval [x(c—), x(c)]. Thus, we define
a function g*(r) on (0, 1) by

if t = x(c) for some real c, let

. (5)
g*(r)=inf{u: x(u) =x(c)},
if ¢ is a jump point for x(-) and x(c—) <t < x(c),
let g*(¢)=c. (6)

LEMMA 4. g*(r) is nondecreasing on (0, 1).

Proof. Let {c,;} be the set of all jump points of x(c), and let ¢, < 1,.

If t;=x(c) and 7,=x(u), then ¢<u since x(-) is nondecreasing. By
definition, g*(7,) < g*(7,).

If 1, = x(c) and x(c;,— )< t, < x(c;) for some i, then ¢ < c,. It follows that
gr)sce<e;=g*(1)

Suppose there exist i,j such that x(c,_ )<t <x(c;) and x(c,—)<
n<x(c,). If i=j, then t, =c,=g*(¢;)=g*(s,). If i#j and if ¢;>¢,, then
X(c;) < x(c;— ), which contradicts ¢, <1,. Hence ¢;<c,, and g*(r,) <g*(z,).

Finally, suppose that x(c,— ) <t, <x(c;) for some i and ¢, = x(c). Then
¢;<c, and g*(1,) <g*(1,).

LEMMA 5. Let

A, = {xe (0, 1): lim ifm |f(t)—f(x)|P=0}.

c—=0 28 x—e

Then, u{A,} =1.
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Proof. Let T,f(xy=(1/2) {321 /(1) —f(x)]?di and let Tf(x}=
lim sup, .. T, f(x). Pick geC[0, 1] such that || f—gli,<1/n By the
continuity of g, Tg=0.

Let h=f—g. Then, heL,[0, 1]. Also, since | <p< o

1 rx+e
yp—1
T, h(x)<2 <——28J

LA(E) 2 dr + | (X)) ”).
Therefore,
x4

o 1
Th(x)< lim sup — % j

e—0

Lh())? dt + un,xw)

and thus on [0, 1]

Th<27~Y(Mh? + 14|,

where M is the maximal function defined for all Fe L,{0, 1] by

] AX+E
(MF)(x)= sup 7—] |F(1)] dr.
Qe x 28 Vx ¢
Now,
T. /<27 YT, g+ T.h).
Therefore,

TF<2P Y (Tg+ Th)=2°""Th <47~ (Mh? + | h]?).

Thus, for any y >0,

if Mh?<4'~7y  and th|? <4 =Py, then T < 2y.
Therefore, {Tf>2y} < {Mh?>4'"Fy U {|h1#>4""7}], where each of
the three sets in this relationship denotes the subset of [0, 1] which satisfies

the respective inequality. By Theorem 7.5 and inequality (5), p. 138, of
Rudin [7].

p{Mh? >4y} <3477 e 7 A7) <3477y RN

and

Lh|P >4 el 4P 1 a2,
Hy Yy ) r
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Therefore,
p{Tf>2y} <4%y~'/n”,

and since # is arbitrary,
u{Tf>2y}=0.
Furthermore, since y >0 is also arbitrary,
u{Tf>0}=0.
Note. This proof parallels the cited results in Rudin [7].

LeMMA 6. If x(c)e A, as defined in Lemma 5 then

(a) f(x(c))=c,and
(b) g*(x(c))=c.

Proof. (a) Let x(c)€ 4, and assume f(x(c))>c. Then by the definition
of 4,

1 x(¢)

lim ~ | f(3)—F(x(e))? dy=0.

520 & x(c) e
For any 6 >0, let
B;={ye[0,11:1f(y)—f(x(c))l <6},

and let B§ be the complement of B; in [0, 1].
Also for any >0, let I, ={x(c)—¢, x(¢)]n [0, 1]. Since

[ 1rm=reenirdy=| 175 =f (i dy

>8] 1) =f(x(e)I” dy
B‘am I,
=0 u{Bsnl,},
it follows that
1
lim - | f(y)=f(x(e)]? ™ dy =0,
and

1
lim = p{B5 1.} =0.
lim = p{B5n L}
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1 Moo= ¢ -
Thus, lettlng Ip— max ¢ 17 2p e

}[ =) f=el?=>
YBynd,

<|  If=eir!

Lo,
Shpon | VAN | LN —ete

f VB, VB,
=1 LS T ey = el B0 i

and therefore

lim

&e—0

gl

&

1y | .
<wp‘1£11§%;&|3%[ | f=f e~

1
a1 f(te)) €17 lim — (BN 1)
g—0 &
=0.
Thus,

. 1
hm—J
e—>08 YBSn,

(f—el f—el?2=0. {

-

Now fix 6 >0 so that f(x(c))>c+d. Then, for ye B;.

0<f(x(c))—d—c<f(y)—c<fix{c)i+d—c

Hence,

J‘Bﬁr\[ (f—o) f—cl?™?

[ en—s—ol fixten+s—clr - 1<p<2
Bsn I,

|
>
(

LJW(ﬂx“n_é‘fﬂﬂx&ﬂ~5ﬁcP“{2gp

4

=Qu{Bsn 1L}, where 0 >0.
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Using (7), it follows that

1 R
Mnmf—J(f—ch~cV“
e—0 &£V,

.1
>0 lim ;,u{B(SmIS} =0>0.
e—0
Hence, for ¢> 0 and sufficiently small,

~x{c)
J (f—e) f—c|P~2>0.

x{c)—¢

Thus & {x(c)—¢)<k.(x(c)), contradicting the definition of x(c).
In a similar way, we get a contradiction if we assume that f(x(c)) <c.
Hence f(x(c))=c.
(b) If x(u)=x(c)e A,, then (a) implies that c = f(x(c)) = f(x(u)) = u.
Thus {u: x(u)=x(c)} = {c}. Therefore g*(x(c))=c:

Lemma 7. If x(c—)<t<x(c), then

(@) [y ,0.20, and
(b) (¥ ¢,=0.

x{e—) ¥e

Proof. If x(c—)=1x(c), then the lemma holds trivially. Thus we need
only consider the case x{c—) < x(c).

Assume that [’ . ¢, <0 for some 7 satisfying x(c— ) <1< x(c). Then for
6>0 and sufficiently small, [* ., 4._,<0. Thus,

kc—(s(l)=£: b5

x(c—9)
<f ¢C—é
0

=k, s(x(c—0))

:mcrév

which is a contradiction. Thus (a) is verified.
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From (a). |3, ¢,>0. If {3 >0, then

xte—) x(c—) ¥

kixten=]"s,

ax(c)

<| &
Y0

=k Ax(¢c))

=m

I

which contradicts the definition of x(c). Thus (b) is verified.

Lemma 8. g*eL,[0,1].

Proof. Let {c;} be the discontinuities of x{c). For ¢ [x(c;—), x{c,}].
g*(ty=c,;. By Lemma 5,

Thus, by duality, g*=c, is the best constant approximation to f on
Lx(e,—), x(c) ]

Let A, be the set defined in Lemma 5. For 1e 4, either 7= x{c) for some
¢, in which case f(x(c})=c=g*(x(c)), or x(c;,— )<< x{c,) for some ..

If i#j, then (x(c¢;~), x(c;)) N (x(c;—), x(c;)) = . Hence,

[ir—grir=] F=alr

U x (o= x(en))

<| Fir<ifie.
YU xle— ) x(e,n)

Thus f—g*e L,[0, 1], and, therefore, g* e L,[0, 1].

We can now show that g* is the best nondecreasing L, apptoximation
to ffrom L,[0,1].

THEOREM. [If fe L,[0, L], then g*, as given in Definition 2, is the unique
best nondecreasing L, approximation to f from L,[0, 1.

Proof. Let 4, be as in Lemma 5, and let {¢;} be the discontinuities of
x(c). By Lemma 5, 4, has measure one. Let A},zAp'\,‘U,-(x(c,—), xie )
Define ¢ «=(f—g*)| f—g*|?~* By Lemma 6, ¢,.=0on A4,.
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Now define r(1) = f{ ¢ «. If 1=x(c), then

r([) - j‘A,,r-\ [0, 1] ¢g*

x(c,)

= o
o <c xle,—)

rx(e)

€y
Jy
a<c Xte—)

=0, by Lemma 7.

If x(c; ) <t<x(c,), then

r t) = ¢ *
( J\x(cj—) g
=| 4,
x(e;—)
=0, by Lemma 7.

We also have

Thus #(¢)=0.
Next we note that

[[e0e=] s

x(c;)
=) c:p.,=0.

i vx(e—)

Now let g be a nondecreasing function in L,[0, 1]. Define

g(x), —n<g(x)<n
gulx)=4 —n, glx)< —n

n, n<g(x).
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Then, pointwise, g,—g, 8,0+ —80,+, and | g,f.| <| gh«|. By the
Lebesgue Dominated Convergence Theorem,

JI Euper = J‘i e

0 0
and, using integration by parts,

nl ml

), @ber=—| r(1)dg, <O,

¥
~0

since #{7) >0 and g, is nondecreasing. Therefore

J: g <0= jl g5,

0

Thus, g* is the best L, nondecreasing approximation to f.

Remarks. {(a) If fe C[0, 1], then Lemma & implies that x{c) is strictly
increasing, and f is nondecreasing on

{x(c):0<x(e)< 1.
Furthermore the definition of g* simplifies to

%= )P x(e,— )< r<x(e)
& {f([)a elsewhere,

where, as before, {¢;} denotes the set of jumps of x{c)

(b) The method used in the proof of the theorem can be used in the
proof of Lemma8 to show that g*=¢, is the best nondecreasin
approximation to fon [x(c;— ), x(¢,)].
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